Next Generation Laboratory Automation Systems: Further Improvements in Laboratory Efficiency

http://marc.med.virginia.edu http://medicalautomation.org

Robin A. Felder, Ph.D. Professor of Pathology Director, Medical Automation Research Content Associate Director, Clinical Chemistry The University of Virginia

Disclosure

 Grants – Abbott, Beckman Coulter, Ortho Clinical Diagnostics, Tecan, Hamilton, Perkin Elmer

- Consulting Abbott, Bayer, BD, Dade Behring, Roche
- Travel costs Ortho Clinical Diagnostics

Objectives

Examine current process improvement methods in the context of automation

- Reveal current laboratory automation bottlenecks and technological solutions
- Discuss automation in non-traditional laboratory disciplines and their integration into the core laboratory

What is Medical Automation?

- Process Planning
 - Simulation modeling
 - Process optimization
- Process Monitoring
 - Speed of service delivery
 - Length of queues
- Process Management
 - Process streamlining
 - Process automation
- Process Outcomes
 - Quality metrics
 - Health improvement
 - Patient and provider satisfaction

The **Future of** Healthcare is Technology **Enabled**

New Medical Communication Paradigms

VoceraTM

2007

New Diagnostic Paradigms Ingesti

Ingestible pill camera

Colonoscopy 2005 Colonoscopy 2007

7

Simpler and Better Diagnosis

Intestinal Bleed

Given Imaging.com

Future Pill Technologies

Micro- optoelectromechanical systems (MOEMS) - Given **Imaging/Olympus** Chemical Analysis - SmartPill Photonics Assessment – MTC/Infotonics

New Treatment Paradigms

10

Surgical Robotics

Future Surgical Techniques

- Standardize surgical protocols and outcome in remote locations
- Image guided surgery, Natural Orifice Surgery

Home Diagnostic Medicine 2008

Clinical Laboratory of the Future

Inova Reference Laboratory Northern VA

Chemistry

Anatomic Pathology

Molecular ¹⁴

Quality Management Through Automation

- Automation standardizes testing processes
- Instantaneous measures of performance
 - Precision, Accuracy, Population norms
- Automation can help evaluate performance data and provide instant alerts

Laboratory Quality and Efficiency Processes

Six Sigma

- Juran, Deming, Six Sigma
- Measurement, Evaluation, Adjustment
- Lean
 - Maximize value added steps, minimize wasteful steps

Toyota

- Culture of continuous improvement
- Just-in-time, long term, standardized solid processes
- Medical Automation
 - Technology monitored and optimized process management
 - Contains the medical centric parts of Six Sigma, Lean and Toyota

Lean and **Non-linear** Laboratory Engineering

- Examine the waste in your process
- Redesign for minimal steps
- > 40% savings in costs without automation hardware

Lean

The Missing Link

Accessioning automation

- Front End Automation (Gene Pawlick, MD)
- Sample inspection (Charles Hawker, PhD)
- RFID (Bill Neeley, MD)
- Centrifugation

Centrifugation Options

AutofugeMultifugeSpeedyfuge

Autofuge[™] (bioSys[™])

- Reduced automation and maintenance
- High throughput at 425 tubes per hour
- Eliminates need to weigh tubes, or wait for balanced loads
- Both stand alone and automation versions available

Lean Design and Automation

 Linear arrangement of accessioners
 Linear flow of specimens with batch takeout for analysis

Sonic Healthcare, Sydney, Australia Slide courtesy of Alan Lloyd

Laboratory Costs Slide courtesy of Ortho Clinical Diagnostics

Labor 58%

- Analytical 41%
- Pre-Analytical 11%
- Post-Analytical
 5%
- Reagents 27%
- Everything else 15%

Sources: NCCLS GP11-T, Cost Accounting in the Clinical Laboratory: Tentative Guideline, December 1993 "Assessing the Real Cost of Analyzer Ownership", Gerald Catanese, American Clinical Laboratory, June 1993 "Buying Lab Equipment: Comparative Analysis Reveals Operating Costs", E.V. Bunata, Materials Management in Healthcare, September 1992

The Lab of the (Near) Future

- Pre-labeled phlebotomy with automatic sample logging technology (e.g. RFID)
- Appropriate sample collection for disease state and time Process Control
- Rapid transportation, accessioning, and processing
- Analytical excellence
- Synoptic reporting
- Storage for reuse or research biorepository

Phlebotomy Tray Preparation

 Visual tube inventory
 Automated reorder
 Linked to LIS to generate labeled tubes
 Eliminates errors

> BC-ROBO – mini 40 Multi-tray system

Clinical Laboratory of the Future

Chemistry

Anatomic Pathology

Molecular 26

Modular Point-in-space Sampling

Optimal LIS – Process Control Interface

Minimize the need for interface development Allows LIS to evolve into Process Controller

See: Rod Markin, MD, PhD The LIS Continuum

Laboratory Automation Options

Company	Name	USA/Eur/Asia- Aust.	1 st Install – 2006 Contracts
A&T Corporation	Clinilog	0/0/85	1993 -10
Abbott	Accelerator	2/13/0	2005 -36
Beckman Coulter	Power Processor	285/70/60	1998 -51
Dade Behring	StreamLAB AW	0/0/0	2002 -0
Integrated LAS	Efficiency Series	1/0/0	2003 -1
Olympus	OLA2500 LAS	40/200/3	2003 -7
Ortho Diagnostics	enGen	5/18/0	2000 -16
Roche	MODULAR Pre-analytics	s 50/109/105	2000 -34
Siemens	Advia Labcell	20/46/10	1998 -16
Sysmex Amer.	HSTN	100+/1000+	1991 -50
Thermo	TCAutomation	5/43/0	2000 -0

Source: CAP Today, March 2007 Annual Automation Survey

Has Lab Automation Lived Up to the Expectations of U.S. Users ?

	<u>Front-End</u>	<u>TLA</u>	<u>Combined</u>
Absolutely Yes	37%	41%	39%
Mostly Yes	37%	34%	36%
SubTotal	74%	75%	75%
Satisfactory	22%	22%	22%
No	4%	3%	3%

Survey from Diagnostic Testing & Technology Report (Washington G-2 Reports) October 2005

How Many Systems are Installed in the USA?

32% of laboratories have installed automation (estimated 525 labs)
 66% TLA, 34% pre-analytics
 25% have purchase plans in place

Survey from Diagnostic Testing & Technology Report (Washington G-2 Reports) October 2005, N = 188

Advances in LAS / Instrument Process Control

- Partial Process Control
 - Process controller knows when sample has arrived at the instrument, and data is reported
- Total Process Control
 - Instrument availability
 - Sample status
 - Instrument alarms, flags, status, and warning messages

Vendor	Total Process Control	Partial Process Control
Abbott	Architect	Centaur, Tosoh
	Axysm	Sta-R
Bayer	1640/2400	Sta-R
	Centaur	
Beckman	Synchron	Sta-R, Modular,
	CXI, LXI	Tosoh, CA7000
Dade	Vista, CA7000	Centaur, Tosoh
	RXL, Cobra	
Roche	DP, PP, Cobas	33

4th Generation Laboratory Automation

- Modular open architecture
- Process Management
 - Communication between LIS and LAS
 - Current status of automation system and analyzers
 - Optimization of sample distribution
 - Prioritization of STAT samples
 - Graphical user interface
 - Alerts for low reagents and consumables
 - Alerts for maintenance and error conditions
 - Allows post analytical specimen archiving and retrieval

4th Generation Laboratory Automation

Intelligent sample management

- Automated sample inspector
- Bar code/matrix code/RFID reading
- Intelligent sample routing
- Centrifugation
 - User definable parameters (speed, temperature, time)
 - Multiple centrifuges with >500 tubes/hr. capacity
 - Dedicated STAT centrifuge
- Decapper 1 second per tube
 - Closure independent Hemaguard, rubber stopper, and screw cap

4th Generation Laboratory Automation

- Recapper 1 second per tube
 - Foil Seals
 - Reseal after sampling capability
- Specimen scanner 1 second per tube
 - Serum vs plasma (which anticoagulant) vs urine
 - Clots, fibrin, hemolysis, icterus, lipemia
 - Correct tube type, specimen temperature
 - Heights of serum vs air and cells vs serum interfaces
- Specimen sorter 1 second per tube
 - Intelligent Pre and post analytical sorting
 - Conveyor 1 meter per second
 - Fast shuttle and bypass capabilities
 - Short term storage with recall, Error handling
- Post analytical storage and retrieval

Inventory Management

Inventory Management

- Automated forecasting based on current and past utilization
- Link to storeroom inventory with automated ordering

- Overstocking with utilization-billing

Copyright: Robin A. Felder, Ph.D., all rights reserved

Automated Biorepository

Reduce your operational and financial burden Accelerate the availability of bio-specimens for repeat, reflex, add-on Facilitate medical/research collaboration Achieve consistent highquality samples and data Ensure patient privacy

Automated Storage and Retrieval

Inpeco, Milano, Italy

Beckman Coulter

Hamilton Robotics

Non-Traditional Laboratory Automation

Anatomic Pathology

Molecular Biology

Copyright: Robin A. Felder, Ph.D., all rights reserved

Automated Molecular Diagnostics

- Over 550 samples per 8hr shift for *Chlamydia trachomatis* and *Neisseria gonorrhoeae*
- Automated sample extraction amplification, reading, and LIS reporting
- Pipetting transfers without the use of syringe pumps and tubing
- Isothermal SDA technology

Copyright: Robin A. Felder, Ph.D., all rights reserved

Automation in Anatomic Pathology

Less routine
 More subjective
 Requires individualized attention to each patient case

Commercial Players

Clinical Pathology

- A &T Corporation
- Abbott Diagnostics
- Bayer Healthcare Diagnostics
- BD
- Beckman Coulter
- Dade Behring
- Olympus America
- Ortho-Clinical Diagnostics
- Roche Diagnostics

Anatomic Pathology

- Cellient
- Dako
- Leica
- Milestone
- Roche
- Sakura Finetek
- Ventana Medical Systems

Automation in Tissue Preparation: Tissue-Tek Xpress

- Automated tissue embedding
- Continuous flow operation
- ~120 samples/hr throughput
- Tissue is uniformly fixed using microwave enhanced mixing
- Reduces formalin and xylene use by 80%
- Preserves DNA and RNA

Tissue-Tek Xpress, Sakura Finetek, U.S.A., Inc. <http://www.sakuraus.com>

Tissue Tek Xpress™

Reagent 1 Microwave fixation and dehydration

Sakura Fineteck

Reagent 2 Dehydration and clearing

Circular microwave action and bubble dispersion

Reagent 3 Clearing and paraffin embedding

11 11

Reagent 4 Final paraffin embedding

Morales AR, Nassiri M, Kanboush R, Vincek V, Nadji M. Am J Clin Pathol. 2004;121(4):528-536.

H&E Slide Preparation

80% of total slides are stained with H&E
Estimated market: 500-600M slides per year
A market desperately in need of automation

Automated Slide Preparation

 Up to 80% labor reduction using pallet approach (25 slides)

- 20 tray capacity (500 slides)
- Time to first result in 35 minutes, 200 slides/hr
- Unattended preparation of 500 slides

Ventana, Symphony™ www.ventanamed.€om

What I didn't Cover

Cell Based Assays
 Automated Proteomics
 Mass spectroscopy from tissue sections

ProLink Express TM

Summary and Conclusion

- Systems integration (hardware and software) and process consolidation are the keys to success
- It will be important to develop an economic model for return on investment in terms of real dollars and improved service
- Automation initiatives need to measure improvements to quality, and efficiency
- All areas of the laboratory can benefit from automation

The Future of Laboratory Medicine

- Continued economic pressure for integration of analytical processes
- Increased development and use of efficiency tools
- Incorporation of anatomic, molecular, proteomic, and cell based assays in the central laboratory
- Emerging use of proteomics for detection and staging of occult disease
- Merging of medical imaging and diagnostics
- Growing appreciation for the role of Laboratory Medicine in home diagnostics

Dealing With the Technologist Shortage

Thank you

References

- Medical Automation, Felder RA, Wong M, Alwan M, editors, Artech House, New York, NY. Available in Jan, 2008. Handbook of Clinical Automation, Robotics, and Optimization, G.J. Kost, Ed., Wiley-Interscience, NY 1996
- Preanalytical Automation in the Clinical Laboratory, Boyd & Felder, Chapter 7 in Ward-Cook, Lehmann, Schoeff, & Williams (eds.) Clinical Diagnostic Technology: The Total Testing Process, Vol. 1, AACC Press, Washington, 2003, pp. 107-129.
- Automation in the Clinical Laboratory, Boyd & Hawker, Chapter 11 in Burtis, Ashwood, & Bruns (eds.) Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, Fourth Edit., Elsevier Sanders, St. Louis, MO, 2006, pp. 265-297, plus on-line appendix.
- Mohammad, AA *et. al.*, Use of computer simulation to study impact of increasing routine test volume on turnaround times of STAT samples on ci8200 integrated chemistry and immunoassay analyzer. Clin Chem. 2004 Oct;50(10):1952-5.