## Trends in Computer-Assisted Surgery: Past, Present and Future



Gregory D. Hager Deputy Director, CISST ERC Professor of Computer Science The Johns Hopkins University







# Themes of Today's Talk

- Computer-assisted Surgery Today

   brief case studies of Intuitive Surgical and ISS
- From orthopedics to soft tissue
  - intra-operative image guidance methods
  - improved interventional devices
- Toward true surgical assistance
  - better eyes through intra-operative information presentation
  - better hands through enhanced end-effectors



#### What is CIS?

The integration of information processing with sensing and robotics to produce a "super-human" man-machine team



#### Surgical Assistance



#### **ROBODOC®** System

- Initially developed to assist with Total Hip Replacement (THR) surgery
  - machine femur for cementless prosthesis (femoral stem)



Traditional mallet and broach <===



Computerassisted planning and execution

:===>





Copyright © CISST ERC, 2007

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology



## **ROBODOC Benefits**

- Intended benefits:
  - Increased dimensional accuracy
  - Increased placement accuracy
  - More consistent outcome





Robot



## **ROBODOC History**

1986-1988

Feasibility study and proof of concept at U.C. Davis and IBM

1988-1990

Development of canine system May 2, 1990 First canine surgery





NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology



## **ROBODOC History**

- 1990-1995 Human clinical prototype
  - Nov 1, 1990 Formation of ISS
  - Nov 7, 1992 First human surgery, Sutter General Hospital
  - Aug 1994First European surgery, BGU Frankfurt





NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

8



## **ROBODOC History**

#### 1995- ROBODOC as a Medical Product

March 1996CE Mark (C System)
April 1996 First 2 installations (Germany)
Nov 1996 ISS initial public offering (NASDAQ)
Sept 1997 IMMI acquisition (Neuromate)
March 1998First pinless hip surgery
Feb 2000 First knee replacement surgery





## **ROBODOC Status**

- Approximately 50 systems installed worldwide
  - Europe (Germany, Austria, Switz., France, Spain)
  - Asia (Japan, Korea, India)
  - U.S. (Clinical trial for FDA approval)
- Over 10,000 hip replacement surgeries
- Several hundred knee replacement surgeries
- Public response in Europe (esp. Germany) initially positive, but became negative, ending use of the system
- ISS "ceased operations" on June 2, 2005
- ISS resumed operations in Sept. 2006 (Novatrix Biomedical)



#### da Vinci® System

- Initially developed for battlefield telesurgery
  - commercialized for minimally invasive cardiac bypass procedures



# Traditional bypass with full chest exposure



da Vinci minimally invasive approach





#### da Vinci Benefits

- Intended benefits:
  - Decreased patient trauma
  - Enhanced surgical precision
  - Shorter patient recovery



#### **Traditional approach**



#### **Robot-assisted**



#### **Intuitive Surgical History**

- 1985-1995 Feasibility study and proof of concept at SRI for army telesurgery
- 1995 Intuitive Surgical founded
- 1995-97The "Mona" system developed and testedMarch 1997

March 1997 First test of Mona in Belgium





#### **Intuitive Surgical History**

- da Vinci system offered for sale
- 2000 Intuitive IPO FDA approval (5-10 K)
- 2003 Computer Motion acquired
- 2006 Second generation "S" model introduced





## da Vinci Status

- Over 500 systems installed worldwide
- Principle application prostatectomy
  - Projected: in 2007, over 50% of prostatectomies in US will be performed by a da Vinci
- Financial success
  - 2005 revenue 227 M
  - 2006 revenue 372 M
  - Intuitive surgical market cap. of >9 B



## A New Challenge: Surgical CAD-CAM for Soft Tissue

- Minimally invasive cancer treatment involves accurate image guidance in deformable tissues:
  - liver or kidney tumor ablation
  - prostate brachytherapy
  - external beam radiation therapy
- Ultrasound is key technology
  - safe, cheap, easy to use
- Two approaches to image guidance:
  - external tracking with registration
  - direct observation







#### Methods of Registration for Guidance





#### Methods of Registration for Guidance



Copyright © CISST ERC, 2007



#### **TRUS Guided Prostate Seed Placement**



JHU RadOnc: Song, DeWeese JHU Engineering: Kazanzides Queen's : Fichtinger, Abolmaesumi Industry: Burdette / Acoustic Medsystems

Copyright © CISST ERC, 2007

8

Retract Needle

#### **In-Scanner Prostate Biopsy**

A "manual" robot combined with real-time US imaging and MR-US registration through device



Krieger et al, IEEE TMBE, 2005 Susil et al. J Urol,, 2006 Krieger et al, MICCAI 2007



#### **Steerable Needles**

A way to get devices into spaces currently hard to access



JHU Engineering: Okamura, Cowan, Chirikjian Berkeley: Goldberg Queen's : Fichtinger, Abolmaesumi JHU Clinical: Song, Murphy, Choti



9

#### **Ultrasound Elastography For Guidance**

A combination of palpation, imaging, and image processing



JHU Radiology: Boctor JHU Engineering : Hager Queen's: Fichtinger, Abolmaesumi

#### New Challenges: Surgical Assistance

- Provide more complete information to the surgeon
  - pre-operative images (preferably registered to view)
  - instra-operative images (e.g. ultrasound)
  - force, tissue stiffness, oxygenation
- Improve dexterity and reduce size
  - robots for micro-surgical applications
- Provide physical guidance
  - improve safety through "no-fly" zones
  - improve repeatability through guidance (virtual rulers)



#### Example: Augmented Reality in Robot-Assisted Surgical Systems



**Clockwise from upper left:** daVinci surgical robot; Information overlay of force information on daVinci display (Okamura *et al.*); Real time overlay of ultrasound images on daVinci display (Taylor *et al.*)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_7.jpeg)

## **Snake Robot for Minimally Invasive Surgery**

Simaan, Kapoor, Wei, Xu, Kazanzides, Taylor, Flint

- Intended for use in the throat and upper airways
- Each arm consists of a 4-DOF tool manipulation unit that positions a 4-DOF snake-like wrist and a simple gripper
- Integrated with teleoperation master and virtual fixtures

![](_page_23_Figure_5.jpeg)

![](_page_23_Picture_6.jpeg)

Dr. Paul Flint of the JHU otolaryngology department

Surgeon's view using a standard training phantom

![](_page_23_Picture_11.jpeg)

#### Video to CT Deformable Registration

![](_page_24_Picture_1.jpeg)

Copyright © CISST ERC, 2007

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

![](_page_24_Picture_4.jpeg)

#### **Some Closing Observations**

- CIS market is not yet well-defined
  - Intuitive was able to rapidly follow the market, ISS was not
  - Time to original conception to market is long: 10-15 years!
- Key to safe, widely accepted systems:
  - Simplicity
  - High relevance
  - Leave the surgeon "in the loop"
- Differing objectives means a wide variety of systems
  - Surgical Assistance: put the eyes and hands of surgeon in places they could not otherwise go
  - Surgical CAD-CAM: increase accuracy, precision, repeatability

![](_page_25_Picture_13.jpeg)

#### **Three Learning Objectives**

- To understand the regulatory and commercial challenges for new medical devices
- To understand the two broad paradigms of computer-assisted interventional systems.
- To be aware of current trends in CIS

#### **Self-Assessment Questions**

- Why are soft-tissue interventions difficult to automate?
- What is the meaning of image registration?
- What is ultrasound elastography?
- What are two limitations of current minimally invasive surgical systems?
- What is the typical time from initial concept to market for new paradigms of devices?

![](_page_27_Picture_8.jpeg)

#### Acknowledgements

- Faculty
  - Gabor Fichtinger
  - Russell Taylor
  - Allison Okamura
  - Peter Kazanzides
  - Emad Boctor
  - Noah Cowan
- Clinicians
  - Paul Flint
  - Michael Choti
  - Rich Zellars
  - Daniel Song
  - Ted DeWeese
  - Li-Ming Su
  - David Yuh

- Staff and Students
  - Balazs Vagvolgyi
  - Axel Krieger
  - Ron Susil
  - Carol Reiley
  - Bob Webster
  - Ankur Kapoor
- Funding

![](_page_28_Picture_24.jpeg)

8