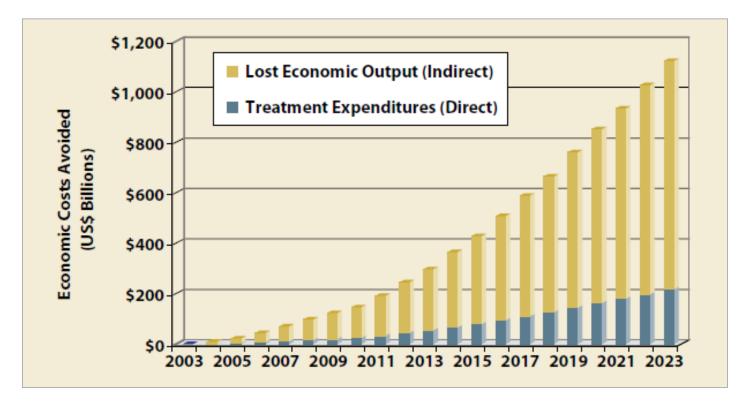


ıgnıte

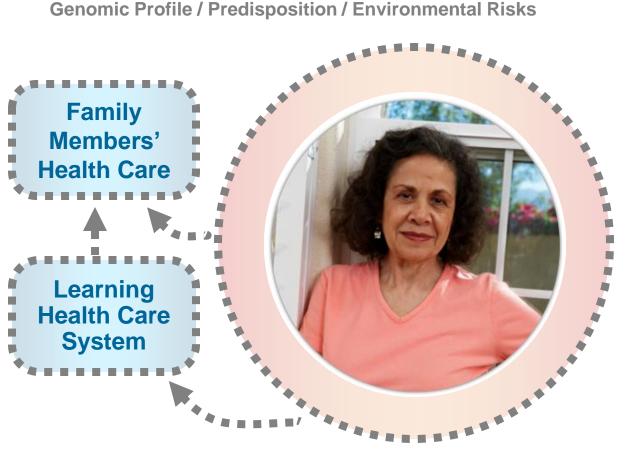

INSTITUTE FOR INDIVIDUALIZED HEALTH

A NEW ERA IN MEDICINE

THE PROBLEM Disease burdens are at epidemic levels and costs

Better Prevention and Management of Chronic Disease are Critical to Improving Health Outcomes and Lowering Healthcare Costs

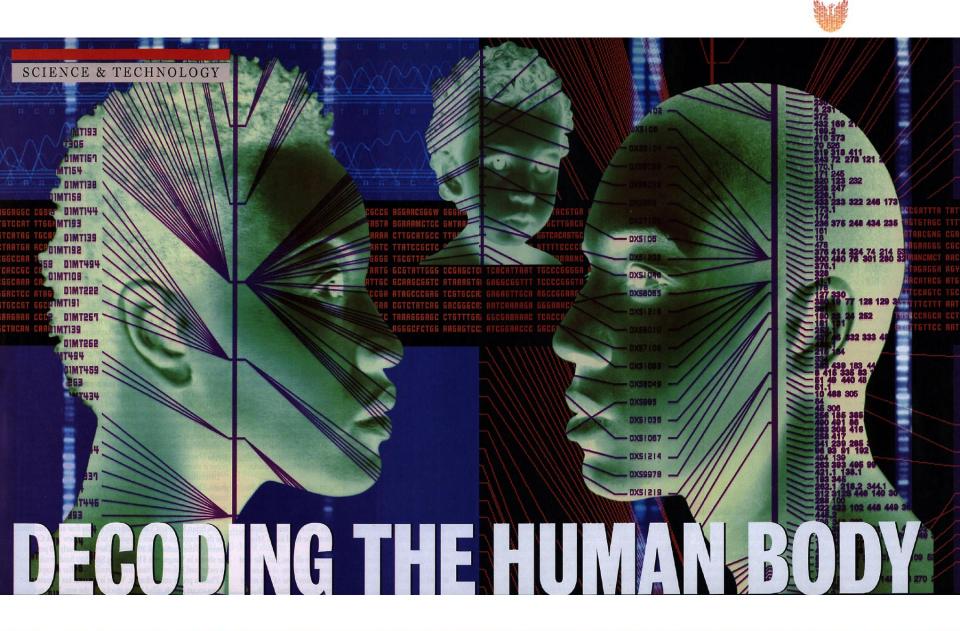
Source: DeVol, R, Bedroussian, A, et al. An Unhealthy America: The Economic Burden of Chronic Disease. The Milken Institute. October 2007.


Mission and Vision

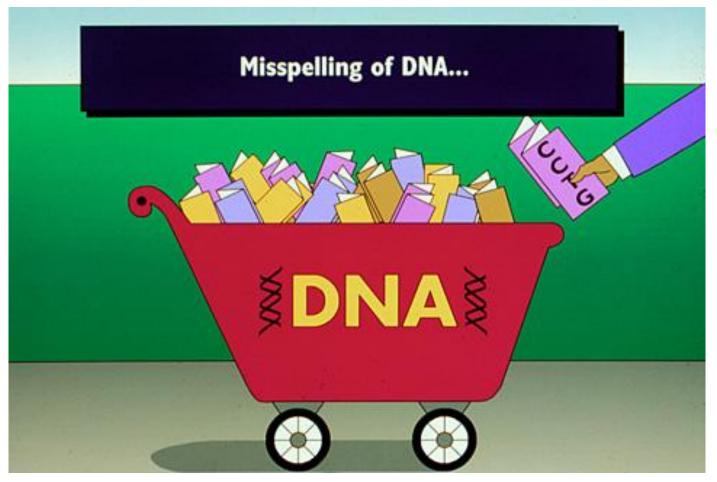
A unique medical research institute:

- first fully integrated entity to make
 "personalized medicine" a reality
- weaving together discovery, commercialization, and application of new personalized diagnostics and therapeutics
- the model for 21st century care that applies the latest knowledge to prevent, delay onset, or cure disease

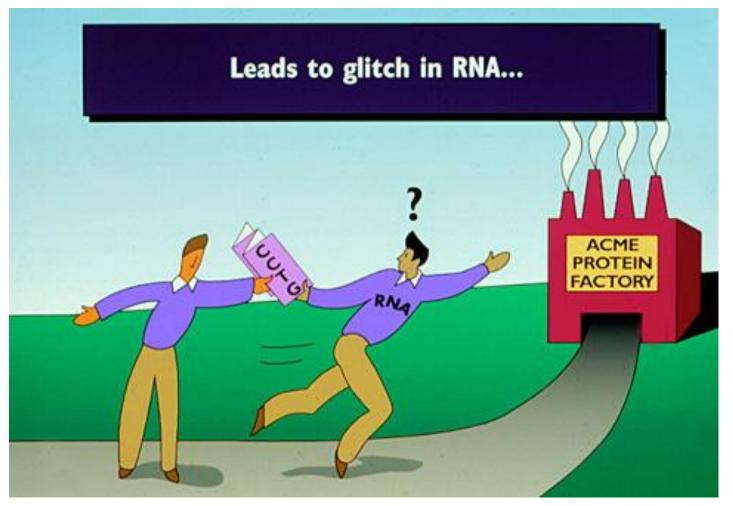
What is Personalized Medicine?

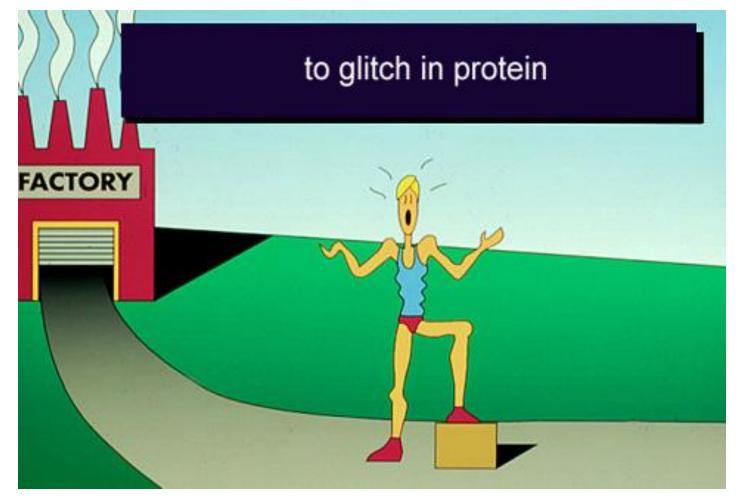


Personal Health / Wellness (Disease pre-emption)


Interaction with Health Care Provider (Early diagnosis if needed)

Interventions (Targeted treatment individualized to my molecular profile and that of my disease)


Post-Disease Management



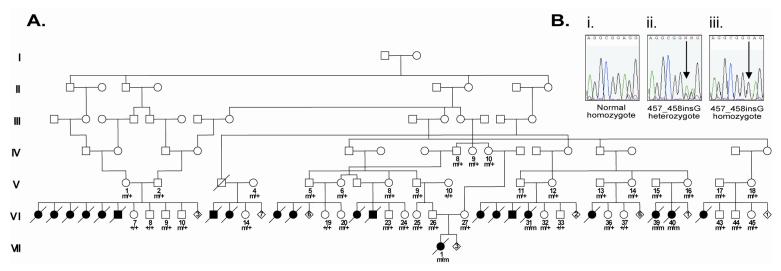
Large-Scale Science

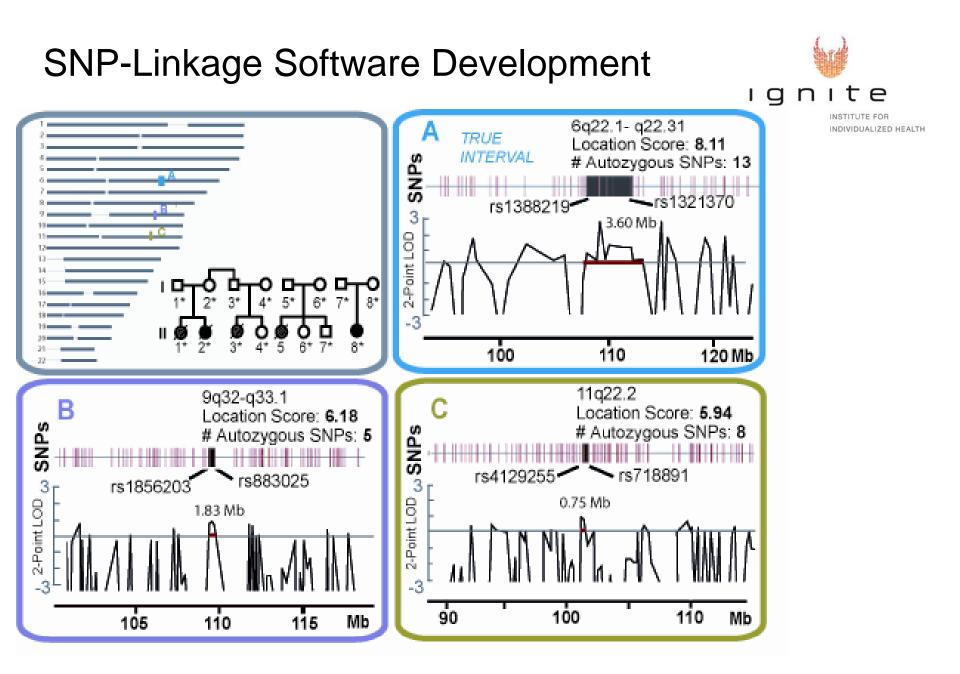
Mapping collie lineage

JOURNAL of MEDICINE			
nis week in the journal rikle Summaries RSPECTIVE	Bilateral Renal-Vein Thrombosis Associated with the Nephrotic Syndrome S. Phonsombat and M. L. Stoller		
Nics and Independence — The Collapse of e Canadian Medical Association Journal Shuchman and D. A. Redelmeier	Enterobles vermicularis M. D. Brown		
urt "D" for "Defective" — The Medicare rag-Benefit Chaos Avom	CASE RECORDS OF THE MASSACHUSETTS CENTRAL MOSPITAL Case 10-2006 — A 66-Year-Old Woman with Barrett's Esophagus with High-Grade		
Inclosed Arricles dety and Immunogenicity of an Inactivated abvirion Influenza A (HSN1) Vaccine J. Transport and Others	Dysplasta N. S. Nishicka and G. Y. Lauwera		
stpatient Gatificoacin Therapy and systycenia in Older Adults Y. Park-Wyllie and Others	Vaccines against Avian Influenza — A Race against Time G. A. Poland		
walence of Moneclonal Gammopathy of ndetermined Significance A. Kyle and Others	Serious Adverse Drug Effects — Seeing the Trees through the Forest J. H. Gurwitz		
tief Report: Recessive Symptomatic Focal plepsy and Mutant Contactin-Associated vitein-like 2 A. Strauss and Others	Better Behavioral Health Care Coverage for Everyone S. Glied and A. Cuellar		


- 4 site NIH Microarray Consortium (funded by 15 NIH institutes at Duke, Yale, UCLA, Stanford, TGen)
- 10 years of experience with Affymetrix platform
- 5 years experience with Illumina
- >60,000 RNA expression profiles run
- >100,000 SNP genotyping arrays run (10k, 50k, 100k, 500k, 1M)
- Software developed with industry to call and analyze genotype data
- Public access data warehousing
- First "Genomics Collaborators", "Center of Excellence", and "TransMed" site of Affymetrix
- NHLBI Programs in Genomic Applications
- NEI intramural contract site
- NIH Neuroscience Array Consortium
- NCI funded leukemia catalog
- NIA funded Alzheimer's disease catalog
- ADNI Consortium hub
- International Autism Genome Project Genotyping Site
- High throughput sequencing (Illumina/ABI)
- ENDGAME Consortium

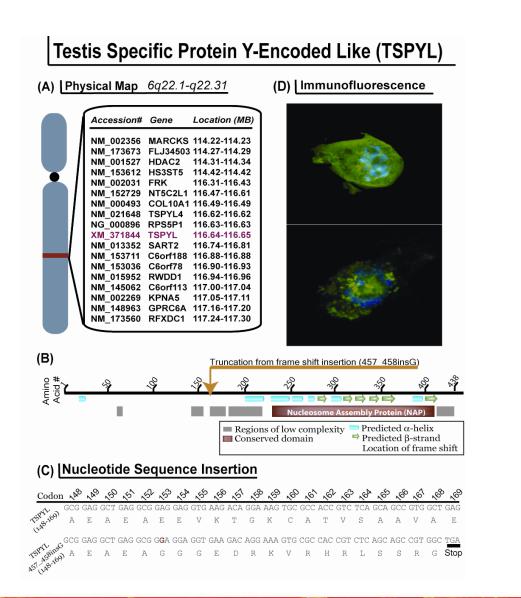
The Shop



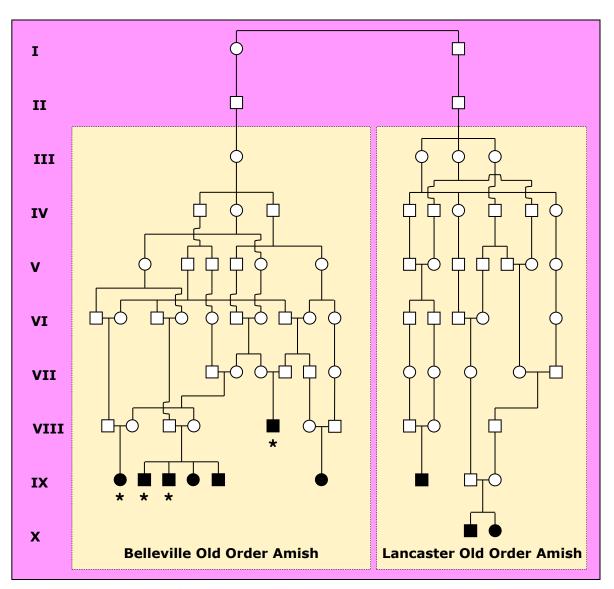


Sudden Infant Death Syndrome (SIDDT)

Puffenberger et al. *Proc Natl Acad Sci U S A*. 2004 Aug 10;101(32):11689-94



Ignitin Bio-IN Workd Grand Prize Winner 2005 and


High-Throughput Mutation Identification

INDIVIDUALIZED HEALTH

Autism Spectrum Disorder

ıgnı Cortical **Dysplasia with Focal Epilepsy** and Autism (CDFE)

INSTITUTE FOR INDIVIDUALIZED HEALTH

te

Strauss et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. New England Journal of Medicine, March 30, 2006

	NGLAND L of MEDICINE
THIS WEEK IN THE JOURNAL Article Summaries	IMAGES IN CLINICAL MEDICINE Bilateral Renal-Vein Thrombosis A with the Nephrotic Syndrome S. Phonsombat and M. L. Stoller
Politics and Independence — The Collapse of the Canadian Medical Association Journal M. Shuchman and D. A. Redelmeier	Enterobius vermicularis M. D. Brown
Part "D" for "Defective" — The Medicare Drug-Benefit Chaos J. Avom	CASE RECORDS OF THE MASSACHUSETTS GENERAL HOSPITAL Case 10-2006 — A 66-Year-Old W
ORIGINAL ARTICLES Safety and Immunogenicity of an Inactivated Subvirion Influenza A (H5N1) Vaccine	Barrett's Esophagus with High-Gra Dysplasia N. S. Nishioka and G. Y. Lauwers
J. J. Treanor and Others	EDITORIALS
Outpatient Gatifloxacin Therapy and Dysglycemia in Older Adults L. Y. Park-Wyllie and Others	Vaccines against Avian Influenza – against Time G. A. Poland
Prevalence of Monoclonal Gammopathy of Undetermined Significance	Serious Adverse Drug Effects — Se Trees through the Forest J. H. Gurwitz

A. Kyle and Oth

atic Foca Epilepsy and Mutant Co Protein-like 2 K. A. Strauss and Other I Mutant Conta

d Womar -Grade

za - A Raci

Seeing the

Better Behavioral Health Care Coverage for

Everyone S. Glied and A. Cuell

COMMENTARY

Unraveling Autism

Dietrich A. Stephan^{1,*}

In this issue of *AJHG*, Alarcón et al.,¹ Arking et al.,² and Bakkaloglu et al.³ identify a series of functional variants in the *CNTNAP2* gene that unequivocally implicate this gene as causing Type 1 autism in the general population.

Autism Spectrum Disorder (ASD) is a catch-all diagnosis for a set of poorly understood neurodevelopmental disorders that are clinically heterogeneous, with a spectrum of severity, characterized by repetitive self-stimulatory behaviors and communication and socialization deficits. ASD is traditionally diagnosed by the age of 3 years and the severe forms can be accompanied by language regression, seizures, and low measured IQ. The more strict diagnosis of "autism" is made through behavioral testing on the ADOS and/or ADI-R rating systems. The umbrella diagnosis of ASD

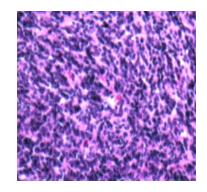
ject) have reproducibly identified several loci by studying ASD phenotypes segregating through rare pedigrees with multiple affecteds.⁴ Because the more common forms of ASD are sporadic and ASD individuals are less likely to reproduce, we can assume that this majority of ASD predisposition is caused by either SNP variants segregating through the population or by a high new mutation rate in predisposition genes.

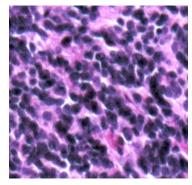
Until recently, there existed only three genes with limited evidence (often only in a few probands) implicating them as causative of ADOS/

was truncated through a homozygous loss-of-function mutation in a single family.9 The mechanism of action of the mutation is likely altered attachment of the axon to the glia via the TAG-1 protein and mislocalization of ion channels at the juxtaparanodal junction leading to cortical dysplasia. This finding is now replicated in a large sampling of the autism population by three groups in this issue of AJHG and places the CNTNAP2 gene as the first widely replicated autismpredisposition gene. Alarcón et al.,1 Arking et al.,² and Bakkaloglu et al.³ all describe functional variants (both

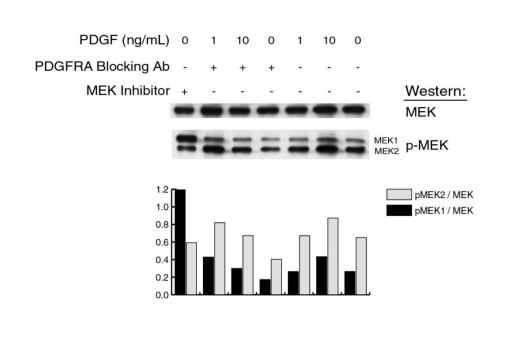
Medulloblastoma

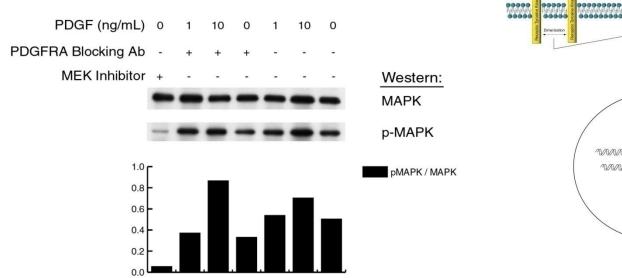
- Undifferentiated embryonal neuroepithelial tumor of the cerebellum
- Most common malignant brain tumor in children
- Frequently metastasizes



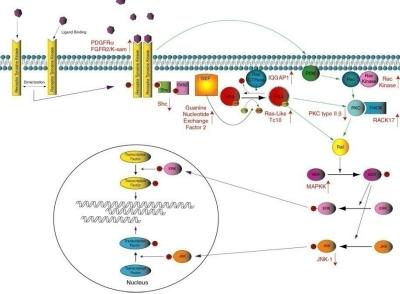

Brown KM, MacDonald TJ, LaFleur B, Peterson KM, Lawlor C, Chen Y, Packer RJ, Cogen P, & Stephan DA. <u>Nature</u> <u>Genetics</u>. 29:143-152, 2001

Medulloblastoma Treatment

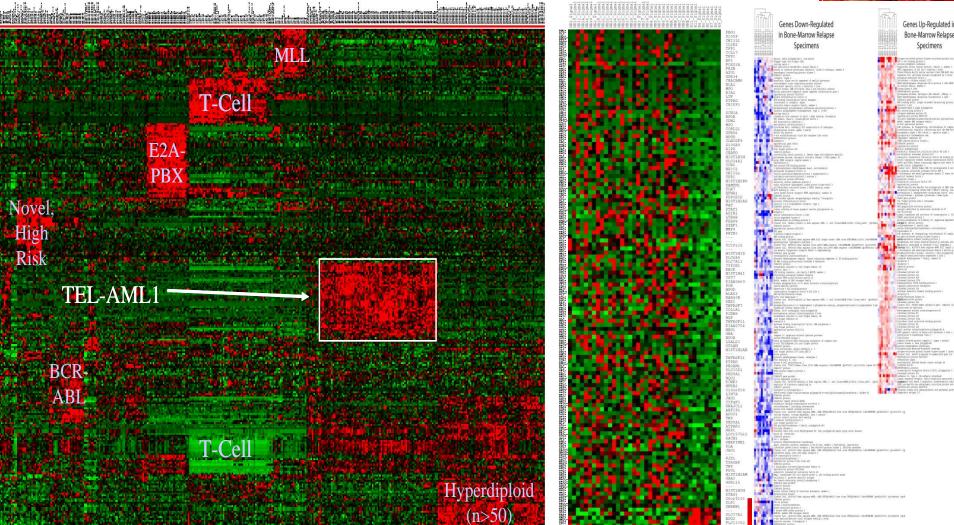

- 1. Surgery
- 2. Usually chemotherapy
- 3. Craniospinal radiation <u>to prevent</u> <u>metastasis</u>
- Surviving patients have poor quality of life due to side-effects of radiotherapy:
 - •Neurocognitive deficits
 - •Neuroendocrine deficits
 - •Hearing loss



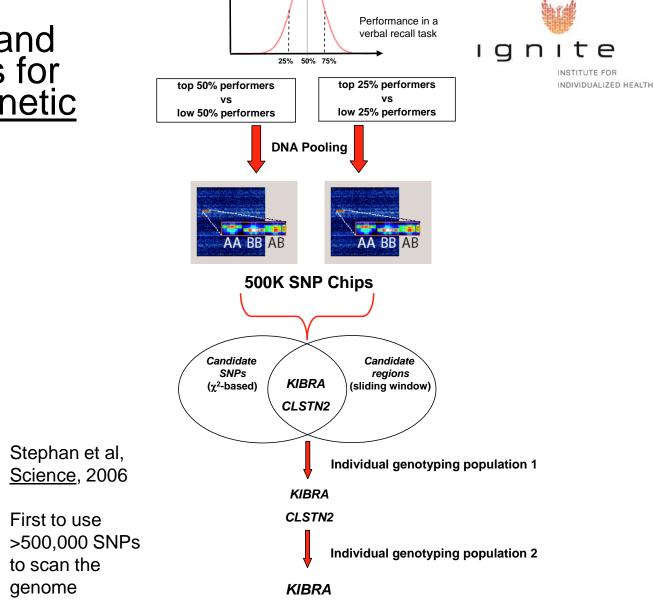
			Average Intensity,	Average		Average	
Non-Metastatic Tumors Metastatic Tumors			Non-	Intensity,	Permutational	Fold	
	Probe Set	Gene Name	Metastatic	Metastatic	p-value	Difference	9
	1937_at	Retinoblastoma 1	3606	1998	0.004	1.80	
	624_at	GTP-binding protein (RAB3B)	134	23	0.005	5.93	
	1611_s_at	Interferon (IFN-gamma)	111	39	0.007	2.85	
	1548_s_at	Interleukin 10 (IL10)	381	171	0.007	2.23	
	2042_s_at	c-myb	117	36	0.010	3.24	
	885_g_at	Integrin alpha-3 chain	507	297	0.018	1.71	
	529_at	Human dual-specificity protein phosphatase	1309	440	0.018	2.98	
	2070_i_at	Protein kinase (JNK1)	241	71	0.024	3.42	
	785_at	Nedd-4-like ubiquitin-protein ligase WWP2	273	107	0.028	2.54	
	1912_s_at	APC	1367	516	0.034	2.65	
	304_at	Guanine Nucleotide Exchange Factor 2	47	10	0.035	4.69	
	463_g_at	Nuclear factor I B3	3367	1654	0.036	2.04	
	1380_at	Keratinocyte growth factor	239	140	0.036	1.71	
	1600_at	Tyrosine kinase (TXK)	322	183	0.037	1.76	
	654_at	MXI1	3264	1812	0.037	1.80	
	1467_at	Epidermal growth factor receptor kinase substrate (Eps8)	960	471	0.037	2.04	
	1127_at	Ribosomal protein S6 kinase 2 (RPS6KA2)	857	368	0.040	2.33	
	2046_at	Erg protein (ets-related gene), 3' flank	718	365	0.044	1.97	
	2022_at	Rac protein kinase beta	125	60	0.045	2.09	
	528_at	Heat shock protein 27 (HSP27)	489	269	0.046	1.82	
		TINUR= NGFI-B/nur77 beta-type transcription factor homolog	314	11	0.047	28.22	
	1216_at	Protein kinase C (PKC) type beta II	162	32	0.048	5.01	
	1012_at	p300/CBP-associated factor (P/CAF)	130	68	0.048	1.92	
	1511_at	p52 and p64 isoforms of N-Shc	996	670	0.049	1.49	Down
	726_f_at	Chorionic Somatomammotropin Hormone Cs-5	757	437	0.049	1.73	
	139_at	Guanylate kinase associated protein (GKAP)	52	26	0.050	2.05	in M+
	205_g_at	Homeobox 1.4	15	213	0.000	14.40	NG //81 69
	829_s_at	Glutathione S-transferase-P1c	2882	11495	0.000	3.99	Up in
	239_at	Cathepsin D (catD)	2889	6098	0.001	2.11	М+
	652_g_at	Replication protein A 14kDa subunit (RPA)	790	1530	0.003	1.94	IVIT
	1693_s_at	Tissue inhibitor of metalloproteinases (HUMTIMP)	158	3185	0.004	20.14	
	2062_at	MAC25	3356	11374	0.004	3.39	
	191_at	Mucin (MUC8)	192	370	0.004	1.92	
	651_at	Replication protein A 14kDa subunit (RPA)	217	615	0.006	2.84	
	671_at	SPARC/osteonectin	4165	8588	0.007	2.06	
	1818_at	Ras-Like Protein Tc10	578	1318	0.007	2.28	
		Insulin-like growth factor binding protein-2	417	2012	0.008	4.83	
	841_at	Protein kinase C-binding protein RACK17	72	447	0.009	6.19	
		Tumor-associated membrane protein homolog (TMP)	33	184	0.009	5.57	
		FGF Receptor K-Sam, Alt. Splice 3	90	343	0.009	3.80	
		Spermidine/Spermine N1-Acetyltransferase, Alt. Splice 2	2401	3486	0.009	1.45	
	709_at	Beta-tubulin gene, clone m40	3393	5071	0.010	1.49	
	1319_at	X74764cds receptor protein tyrosine kinase	80	408	0.012	5.10	
	368_at	5T4 Oncofetal antigen	358	780	0.012	2.18	
	1001_at	Putative receptor tyrosine kinase (tie)	281	749	0.013	2.67	
	982_at	P1-Cdc46	558	847	0.013	1.52	
		NF-IL6-beta	864	1413	0.013	1.64	
	292 at	Ubiquinal autochrome a reductase core l	2645	1256	0.013	1.61	


a.

b.



I g nite I stitute for Individualized health

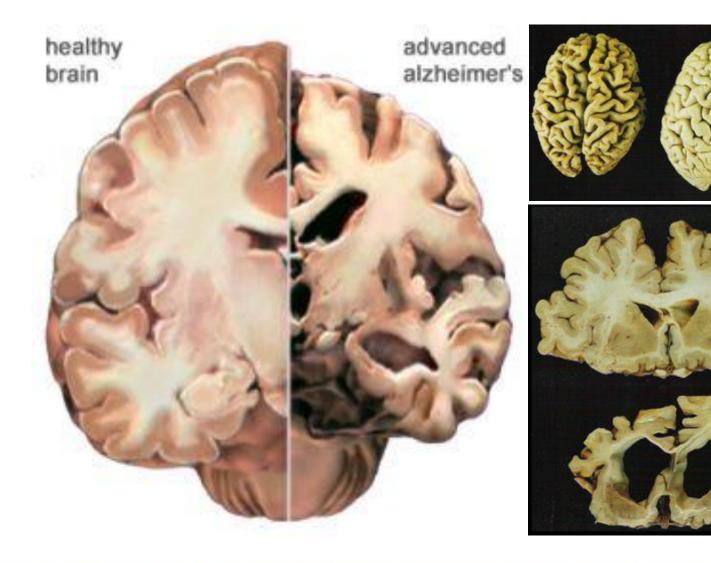

Pediatric ALL – Diagnosis and Treatment

Mitchell S *et al*, *BMC* Genomics. 2004 Sep 23;5(1):71. Henry M *et al*, *Submitted* Brown KM *et al*, *In Preparation*

ı g n

Diagnostics and Therapeutics for <u>Complex Genetic</u> isease:

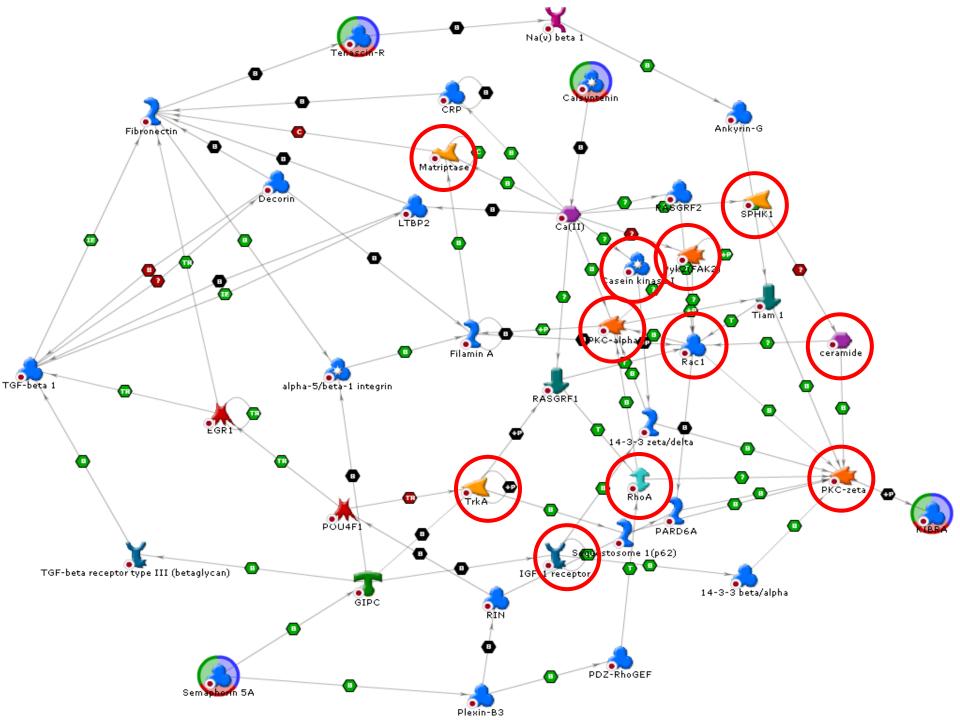
N = 345

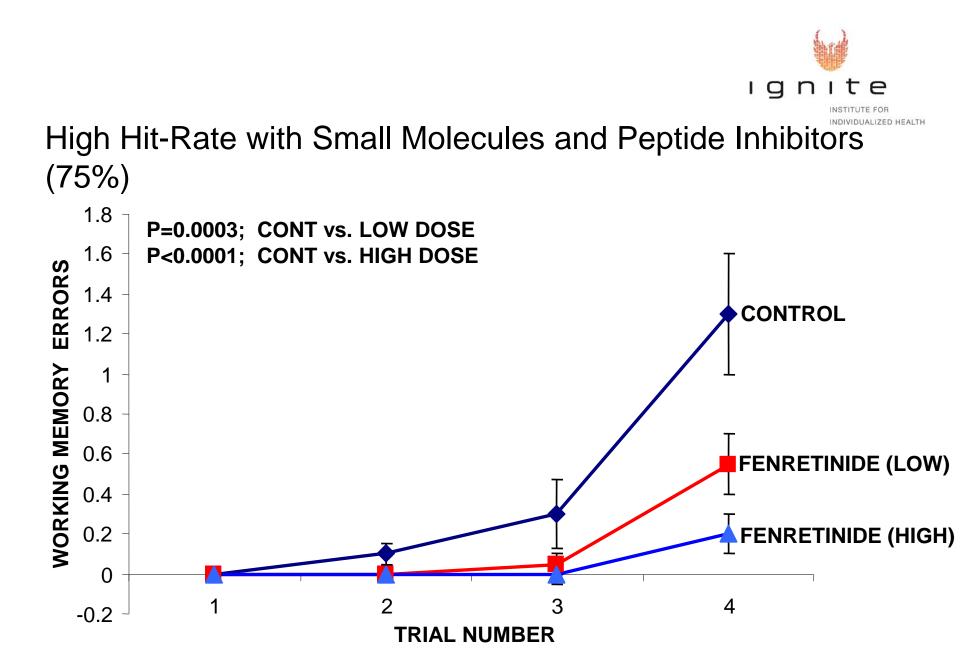

te

Alzheimer's Disease

INDIVIDUALIZED HEALTH

Common *Kibra* Alleles Are Associated with Human Memory Performance


Andreas Papassotiropoulos,^{1,3*†} Dietrich A. Stephan,^{3*†} Matthew J. Huentelman,³ Frederic J. Hoerndli,¹ David W. Craig,³ John V. Pearson,³ Kim-Dung Huynh,¹ Fabienne Brunner,¹ Jason Comeveaux,³ David Osborne,⁴ M. Axel Wollmer,¹ Amanda Aerni,¹ Daniel Coluccia,¹ Jürgen Hänggi,¹ Christian R. A. Mondadori,¹ Andreas Buchmann,¹ Eric M. Reiman,^{3,6} Richard J. Caselli,⁵ Katharina Henke,¹ Dominique J.-F. de Quervain^{1,2}


Human memory is a polygenic trait. We performed a genome-wide screen to identify memoryrelated gene variants. A genomic locus encoding the brain protein KIBRA was significantly associated with memory performance in three independent, cognitively normal cohorts from Switzerland and the United States. Gene expression studies showed that *KIBRA* was expressed in memory-related brain structures. Functional magnetic resonance imaging detected *KIBRA* allele– dependent differences in hippocampal activations during memory retrieval. Evidence from these experiments suggests a role for KIBRA in human memory.

Human memory is a polygenic cognitive trait. Heritability estimates of $\sim 50\%$ suggest that naturally occurring genetic variability has an important impact on this fundamental brain function (1). Recent candidategene association studies have identified some genetic variations with significant impact on human memory capacity (2–5). However, the success of these studies depends upon preexisting information, which limits their potential to identify unrecognized genes and molecular pathways (6, 7).

Recent advances in the development of high-density genotyping platforms now alogeneity within the study sample (population structure) can lead to spurious associations between a genetic marker and a phenotype (11). Therefore, we controlled for genetic background and found no evidence of significant population stratification; the participants' genetic backgrounds formed one normally distributed cluster (P = 0.6) (10, 12). We identified 10 participants as outliers (probability of cluster allocation lower than 25%) and excluded them from the genetic association studies. The remaining population (n =341) was stratified into four groups according to their performance in a verbal memory task high statistical confidence (10). Two SNPs fulfilled these selection criteria and were prioritized for subsequent individual genotyping to exclude pooling-related false positives: rs17070145 and rs6439886. Both SNPs map within genes expressed in the human brain: rs17070145 is a common $T \rightarrow C$ substitution within the ninth intron of *KIBRA* (GenBank accession number NM_015238), encoding a neuronal protein, and rs6439886 is a common $T \rightarrow C$ substitution within the first intron of *CLSTN2* (encoding the synaptic protein calsyntenin 2) (NM 022131).

Both the KIBRA and CLSTN2 SNPs were also significantly associated with differential human memory performance when we genotyped them individually in Swiss cohort 1 using an independent genotyping technology (10). Carriers of KIBRA rs17070145 T allele had 24% better free recall performance 5 min after word presentation (P = 0.000004) and 19% better free recall performance 24 hours after word presentation (P = 0.0008)than did noncarriers (Table 1, table S1, and fig. S2). TT and CT genotype groups of rs17070145 were combined because the frequency of the TT genotype was low and because both groups displayed similar memory performance (table S1). SNP rs6439886 yielded similar results; however, the mean difference of memory performance between genotype groups was lower than that of rs17070145 (Table 1 and table S1). Both the 5-min and the 24-hour delayed free recall reflected

Commercialization Vehicle

INSTITUTE FOR INDIVIDUALIZED HEALTH

amnestix

where medicine and memory converge.

nome	
company	
science	
profiles	
investors	
contact	

Science

Researchers at Amnestix have discovered a series of genes, and pathways that play a significant role in memory performance in humans using a strategy called whole-genome association analysis. This is performed by scanning the human genome of individuals with and without a trait or disorder at hundreds of thousands of positions to identify where they systematically differ. The approach is technically and computationally challenging but leads to dramatically more accurate understanding of biological processes underlying common human disorders like cognitive dysfunction.

This study was the first ever to describe scanning the human genetic blueprint at over 500,000 positions to identify cognitive differences between humans.

Using the latest whole-genome

More Genetic Risk Factors

Neuron Report

GAB2 Alleles Modify Alzheimer's Risk in APOE ε4 Carriers

Eric M. Reiman,^{1,2,3,17,18,*} Jennifer A. Webster,^{1,17,18} Amanda J. Myers,^{4,5,18} John Hardy,^{5,6} Travis Dunckley,^{1,17} Victoria L. Zismann,^{1,17} Keta D. Joshipura,^{1,17} John V. Pearson,^{1,17} Diane Hu-Lince,^{1,17} Matthew J. Huentelman,^{1,17} David W. Craig,^{1,17} Keith D. Coon,^{1,7,17} Winnie S. Liang,^{1,17} RiLee H. Herbert,^{1,17} Thomas Beach,^{8,17} Kristen C. Rohrer,⁵ Alice S. Zhao,⁵ Doris Leung,⁵ Leslie Bryden,⁵ Lauren Marlowe,⁵ Mona Kaleem,⁵ Diego Mastroeni,⁸ Andrew Grover,^{8,17} Christopher B. Heward,⁹ Rivka Ravid,¹⁰ Joseph Rogers,^{8,17} Michael L. Hutton,¹¹ Stacey Melquist,¹¹ Ron C. Petersen,¹² Gene E. Alexander,^{13,17} Richard J. Caselli,^{14,17} Walter Kukull,¹⁶ Andreas Papassotiropoulos,^{1,15} and Dietrich A. Stephan^{1,2,17,*} ¹Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA ²Banner Alzheimer's Institute, Phoenix, AZ 85006, USA ³Department of Psychiatry, University of Arizona, Tucson, AZ 85724, USA ⁴Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA ⁵Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20892, USA ⁶Reta Lila Weston Laboratories, Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N. 3BG. England ⁷Division of Thoracic Oncology Research, St. Joseph's Hospital, Phoenix, AZ 85013, USA 8 Sun Health Research Institute, Sun City, AZ 85351, USA 9 Kronos Science Laboratory, Phoenix, AZ 85016, USA ¹⁰Netherlands Institute for Neurosciences, Dutch Royal Academy of Arts and Sciences, Meibergdreef 47 AB Amsterdam, The Netherlands ¹¹Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA 12 Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA ¹³Department of Psychology, Arizona State University, Tempe, AZ 85281, USA 14 Department of Neurology, Mayo Clinic, Scottsdale, AZ 85259, USA ¹⁵ Division of Molecular Psychology and Life Sciences Training Facility, Biozentrum, University of Basel, Switzerland ¹⁶National Alzheimer's Coordinating Center, Department of Epidemiology, School of Public Health and Community Medicine,

INDIVIDUALIZED HEALTH

More Genetic Risk Factors

lanite

INSTITUTE FOR INDIVIDUALIZED HEALTH

BRIEF COMMUNICATIONS

genetics

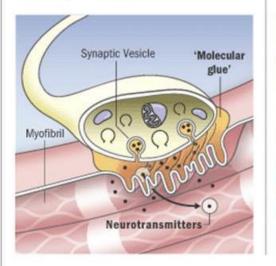
Common sequence variants on 20q11.22 confer melanoma susceptibility

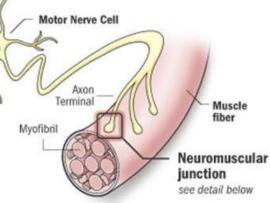
Kevin M Brown^{1,23}, Stuart MacGregor^{2,23}, Grant W Montgomery², David W Craig³, Zhen Zhen Zhao², Kelly Iyadurai¹, Anjali K Henders², Nils Homer⁴, Megan J Campbell², Mitchell Stark², Shane Thomas², Helen Schmid⁵, Elizabeth A Holland⁵, Elizabeth M Gillanders⁶, David L Duffy², Judith A Maskiell⁷, Jodie Jetann⁸, Megan Ferguson⁸, Dietrich A Stephan³, Anne E Cust⁷, David Whiteman², Adele Green², Håkan Olsson^{9,21,22}, Susana Puig^{10,22}, Paola Ghiorzo^{11,22}, Johan Hansson^{12,22}, Florence Demenais^{13,22}, Alisa M Goldstein¹⁴, Nelleke A Gruis^{15,22}, David E Elder^{16,22}, Julia Newton Bishop^{17,22}, Richard F Kefford⁵, Graham G Giles¹⁸, Bruce K Armstrong¹⁹, Joanne F Aitken⁸, John L Hopper⁷, Nicholas G Martin², Jeffrey M Trent²⁰, Graham J Mann⁵ & Nicholas K Hayward²

We conducted a genome-wide association pooling study for cutaneous melanoma and performed validation in samples totaling 2,019 cases and 2,105 controls. Using pooling, we have been identified (*CDKN2A*, *ARF*, *CDK4* and a locus on 1p22)², and *MC1R* has been validated as a gene harboring low-penetrance risk alleles^{3,4}.

To identify additional low-penetrance risk alleles, we carried out a genome-wide association study (GWAS) involving the pooling of 864 cases drawn from a larger population-based sample of cases (individuals with melanoma) from Queensland, unselected for age at onset (Queensland study of Melanoma: Environment and Genetic Associations (Q-MEGA)⁵), and 864 controls (Q1). Each pool was hybridized to six Illumina HumanHap550 arrays, and SNPs were ranked after accounting for pooling error^{6,7}. The proportion of SNPs with *P* values from pooling of < 0.01 was consistent with what would be expected by chance if there were no true associations. Conversely, at smaller *P*-value thresholds, there were more SNPs than expected by chance. For example, at the 0.0001 threshold, we would expect to see \sim 55 SNPs under the null hypothesis of no association, but we in fact observed 90 SNPs, indicating that there were a number of true associations (**Supplementary Note** online).

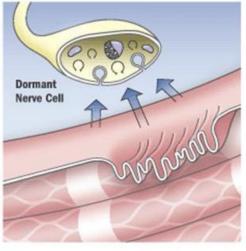
Here we focus on only the most significant finding from pooling. The first-ranked (rs17305657, $P = 2.56 \times 10^{-7}$) and fourth-ranked (rs4911442, $P = 2.39 \times 10^{-6}$) SNPs are 1.5 Mb apart on chromosome 20. Multiple other SNPs in this region showed evidence for association (**Supplementary Fig. 1** online). When the pooling results were validated by individual genetyping concordance was excellent


More Genetic Risk Factors


A New Theory About ALS

A new study of "Lou Gehrig's disease" singles out 14 genes that suggest what may be happening in the ailment: the dissolution of 'molecular glue' that normally makes nerve cells adhere to muscle.

Healthy neuromuscular junction

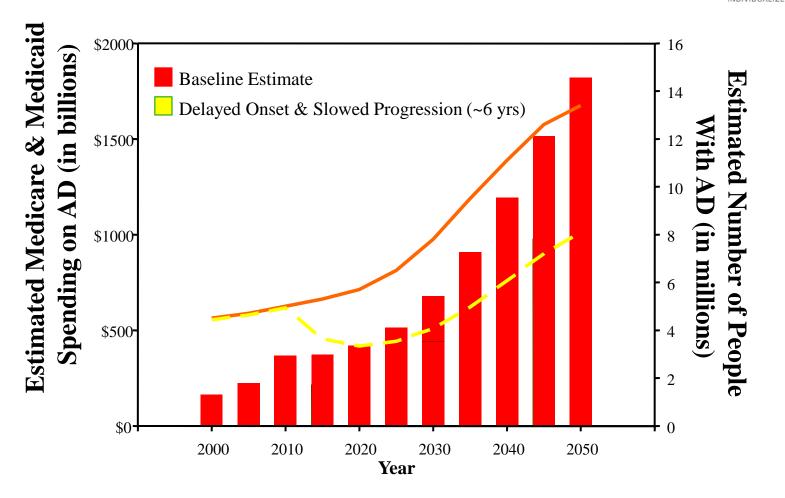

The connection between the nerve cell and the muscle allows transmission of neurotransmitters that enable normal function.

Junction affected by ALS

The nerve cell retracts and becomes dormant after losing connection to the muscle, causing paralysis.

ALS Multiple Sclerosis Age-related Deafness Bipolar Parkinson's Disease Alzheimer's Disease Diabetic Neuropathy PSP Melanoma Addictions ADNI

Dunckley et al, <u>New</u> England Journal of <u>Medicine</u>, 2007


Sources: Translation Genomics Research Institute; the ALS Association

Igniting INOVAtion. Empowering Care.

INDIVIDUALIZED HEALTH

Estimated Savings in Prevalence & Costs of AD with Delayed Onset/Progression

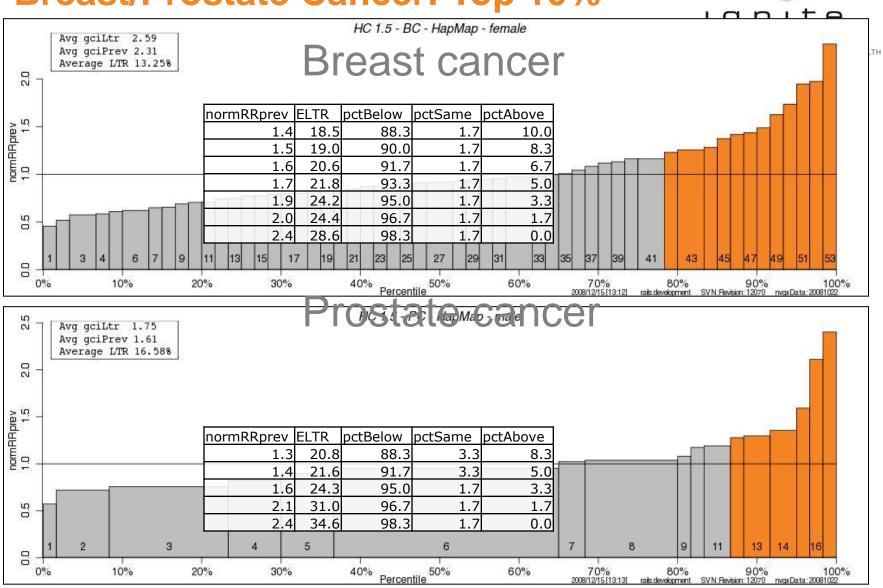
Adapted from The Lewin Group Report, June 2004, "Saving Lives. Saving Money: Dividends for Americans Investing in Alzheimer Research," The Alzheimer's Association (http://www.alz.org/Resources/FactSheets/Lewin_FullReport1.pdf)

DISRUPTIVE INNOVATION

Kleiner Perkins Caufield Byers Mohr Davidow Ventures Sequoia Capital Google P&G

Mayo Duke Scripps Cleveland Clinic Harvard Partners

CLIA Diagnostics Lab, GMP-compliant, ISOcertified



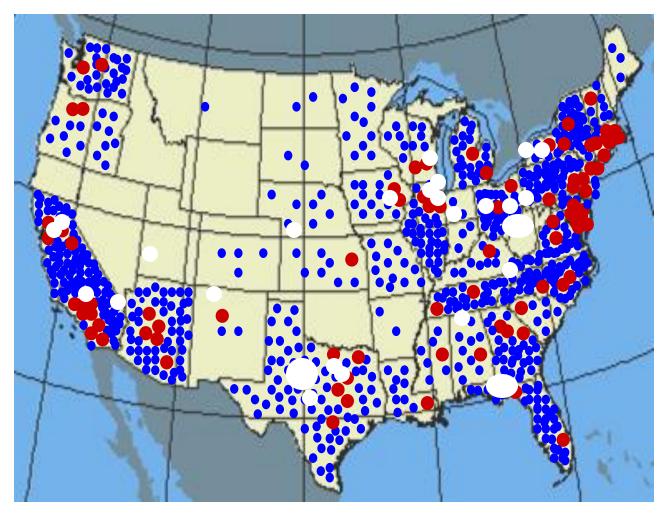
Photolithography

Chemistry

Breast/Prostate Cancer: Top 10%

Physician Portal – Individual Patient Results

ITE INSTITUTE FOR INDIVIDUALIZED HEALTH


Ig

Navigenics			Welcome, [Dr. Francis Collins S	Sign out Manage Prof
Home Patient res	ults	Resources			
< Back to all patients	Nov	igenics Health Compas	a Toat Dogult		
Patient Details	Ivav	igenics rieatin compas	s test result	5	
Test Results	Jonas	s Salk Patient ID: 1234567890	Gender: M DC	B: 8/20/1965	
Select conditions Messages	Understa	anding this chart	_	Print: For Physici	an For Patient
Order history	SNPs	Condition 🗉 🗸	Patient's 💷	Patient's lifetime risk	Average lifetime risk
	+	Abdominal aneurysm	37% - 44%	2.3%	3.1%
	+	Alzheimer's disease	37% - 44%	4.4%	9%
Your account manager:	+	Atrial fibrillation	37% - 44%	22%	26%
urie Gomer oo) NAVI-DOC	+	Breast cancer	37% - 44%	80%	25%
00) NAVI-DOC	+	Celiac disease	37% - 44%	0.03%	0.06%
Contact your account manager If you need any assistance with anything at all anywhere anyhow and whatnot. Please.	+	Colon cancer (UPDATED)	37% - 44%	4.4%	6%
	+	Crohn's disease	37% - 44%	0.55%	0.58%
	+	Diabetes, type 2	37% - 44%	24%	26%
	+	Glaucoma	37% - 44%	0.21%	1.1%
our patient's	+	Graves' disease	37% - 44%	0.90%	0.55%
netic counselor:	+	Heart attack	37% - 44%	37%	42%
Llissa Levin, M.S., CGC		Lung cancer	37% - 44%	8%	8%
nedule an appointment with	+	Lupus	37% - 44%	0.04%	0.03%
your Genetic Counselor now.	+	Macular degeneration	37% - 44%	1.1%	3.1%
unselors are here week- /s from 9 to 6 Pacific, or you	+	Multiple sclerosis	37% - 44%	0.77%	0.30%
schedule another time venient for you.	+	Obesity	37% - 44%	36%	34%
10	+	Osteoarthritis	37% - 44%	14%	18%
Call (888) MY-GC-LINE (694-2546) Intl: +1 (850) 585-7744	+	Prostate cancer	37% - 44%	16%	17%
	+	Psoriasis UPDATED	37% - 44%	5%	4.0%
	+	Restless legs syndrome	37% - 44%	4.1%	4.0%
No.	+	Rheumatoid arthritis			

Number and Distribution of Collaborators

INSTITUTE FOR INDIVIDUALIZED HEALTH

 \rightarrow 1852

Creating and International Quality Brand - Research and Clinical

THE WALL STREET JOU

Map Quest

The project is one of dozens now using the new tools -- which include a detailed New Genetic map of how DNA varies among people **Tools May Reveal**

Roots Of Everyday Ills

Rapid DNA Tests Can Search Many Variations at Once; Probing Obesity, Memory

One Worry: Statistical Errors

By ANTONIO REGALADO April 14, 2006; Page A1

In Switzerland, a group of college studer and local laborers sat down for a brid memory test a couple of years ago. The were given 30 words and then asked, fiv minutes later, to repeat them. On averag they recalled eight.

> Last summ American

entists equippe

whe

with a powerf gene-tes new technolo ing eave this simr test an extra twis DNA sample of the best ar worst word-recall ers were flown Phoenix, their DNA w checked with n

chines that can scour it for 500,000 gene variations at lightning speed.

Researchers then fed the data into a com puter that compared the variations again the test scores. The goal: to identify gene that may underlie short-term memor They hope any discoveries could be use to treat memory disorders such as Al zheimer's disease.

Since erriving more than two years ago, the Translational Genon Institute has gotten a lot of people thinking bio and thinking big. efore its own research facility was ready to occupy, it spawn stated lab space, a push in science education and debate ab we medical school and hospital. The goal is to turn TGsn into an economic engine that could create as man is 120 biotech companies in Arizona by 2012, employing more than 12.00

There are a lot of people out there bying to figure out bio and how it o work for them. Everyone is trying to learn together. Tigen has played a role in that," said Stephen Chavez, a bio consultant and vice president determ References. perix still flies low on the biotech radar. It has only a he

THE WALL STREET JOURNAL

Trail of a Killer A Fitness Mogul, Stricken by **Illness, Hunts for Genes**

Study of Lou Gehrig's Disease **Pinpoints DNA Variations Common to Its Sufferers** Entrepreneur's Latest Pursuit By GAUTAM NAIK and ANTONIO REGALADO November 30, 2006; Page A1

ail

pre

ab

hi

While water-skiing in Vietnam's Mekong Delta about two year Augie Nieto fell several times. His muscular arms suddenly we and he couldn't haul himself up.

Augie Nieto

makers of exercise had done to deser years old.

After an initial bout team of doctors, g Identify the genetic

In just nine months, understanding of A conference in Japa deteriorating condi

A crib-death gene? By Elizabeth Querna

meir parents knew something was wrong. The babies cried with statistic pitch of a geat's bleating. They had trouble breathing a easily startled.

There were other, stranger suggestions. The hour had underder genitals, and some were thought to be girls, even given girls nam they were born. And then, before their first birthdays, without war

This pattern was familiar to Enk Puffenberger: A geneticist at the C Special Children in Strasburg, Pa., Puffenberger treats obscure gen-diseases common to Pennsylvania's Amish and Mennenite commun These latest deaths are among those in an Amish community that h

In a sum-frenched laboratory in Filtering, for away from bucch and country sincetical is the **Frenched Internation Generation Research Part Labora** analyzed instant samples from faunt of the Analia babies and figured as twice was happening. All of the babies who died had a mutation in a gene that regulates bath gental and brain development, preventing a vital protein from developing and causing certain death.

Hereditary? Though the Arnish parents knew their babies were likely to die the deaths resembled sudden infant death syndrome, and the gene is one of a handful that scientists are new looking at to try to explain SIDS, common known as crib death. Bables who die from SIDS appear normal and healthy, then die suddenly, usually while they are sleeping.

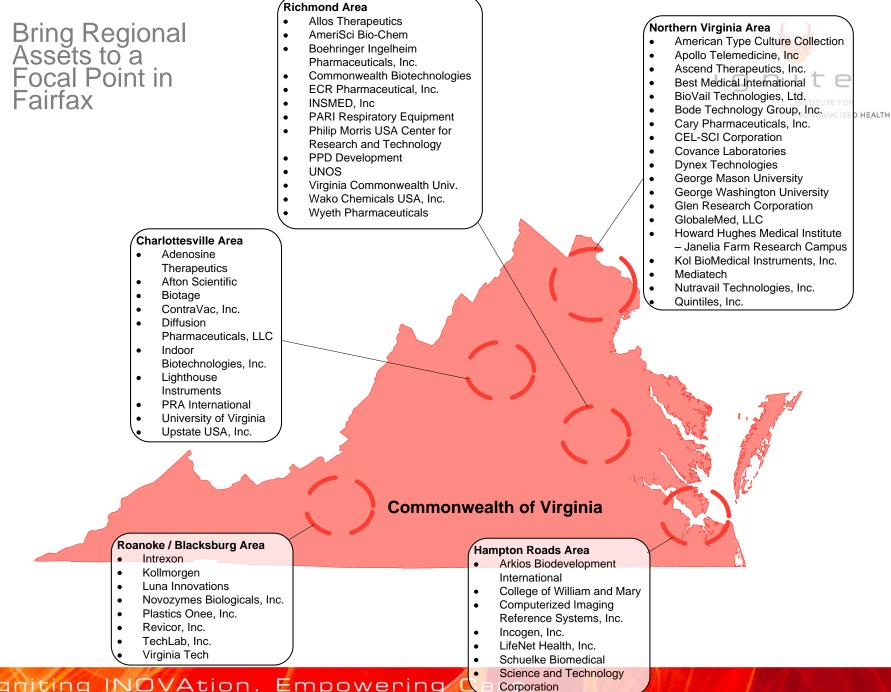
years of life, when our brains were like sponges, yet we retain other recollections for as long as we live?

are.

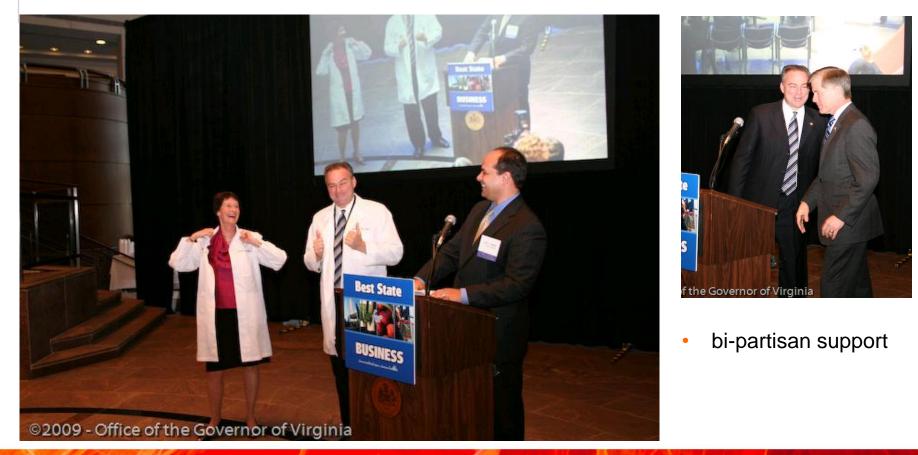
International Quality Brand

The San Diego Union-Tribune.

THE WALL STREET JOURNAL



Our High-school summer interns win the Siemens-Westinghouse Science Award based on peer-reviewed publications – get \$100k each – go to Harvard/Stanford early acceptance: We get \$6.5M endowment for 50 students/year in perpetuity

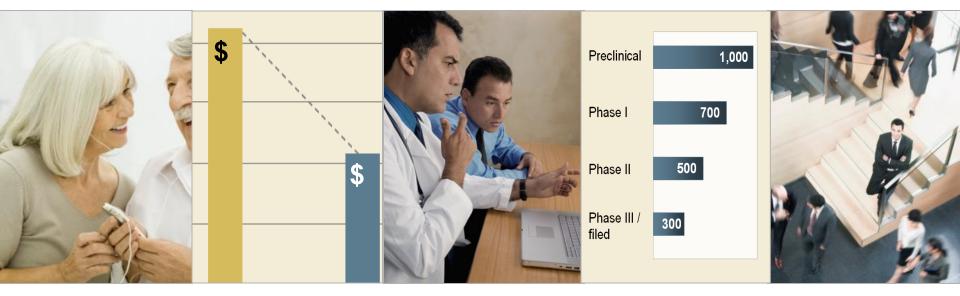


Regional Launch

Monday, November 16, 2009

Ignite Institute Receives Support from Commonwealth of Virginia, Fairfax County, \$200 Million in Initial Funding and Financial Backing, Locks in Key Regional Partner

Temporary Space Q2 2010



- 20,000 sq. ft. in CIT building
- Leave behind as an asset to Virginia and Fairfax in the form of incubator space

What Does Success Look Like?

Americans living longer without disease American health care delivering value at reduced cost "Connected" information from bench to bedside Robust pipeline of diagnostics and targeted therapeutics moving toward approval Growing portfolio of emerging, innovative companies

EPICENTER OF PERSONALIZED MEDICINE

DSTEPHAN@IGNITEINSTITUTE.ORG

INSTITUTE FOR INDIVIDUALIZED HEALTH